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Abstract 10 

 11 

Bovine respiratory disease (BRD) continues to challenge the beef and dairy cattle industries in spite of 12 

improved husbandry practices, implementation of immunization protocols for BRD pathogens, and the 13 

recent use of genomic selection to choose cattle less susceptible to infection. Barriers of overcoming 14 

challenges in reducing BRD incidence include difficulties in: identifying animals suffering from BRD without 15 

showing clinical signs, identifying and understanding the complexity of multiple pathogens effecting the 16 

animal, accounting for differences in frequencies of pathogens in different climates and management 17 

schemes, and an understanding for the interaction of these factors with the animal’s genome. As BRD 18 

susceptibility has been identified as having a genetic component, genomic selection is an attractive 19 

approach to reducing cattle that are susceptible to BRD. Genome-wide association analyses have 20 

identified genomic regions associated with BRD susceptibility for use in genomic selection. Genomic 21 

selection using DNA variants that capture most of the genetic variation for BRD susceptibility enables 22 

identifying cattle susceptible to BRD as calves to increase the rate of genetic change for BRD resistance. 23 

Gene set enrichment analysis and gene expression analyses have also been investigated to understand 24 

the genes and gene pathways utilized in resistance to BRD. These studies provide an opportunity to better 25 

mailto:neibergs@wsu.edu


2 
 

understand BRD disease mechanisms and to develop therapies that are more effective by targeting the 26 

gene pathways utilized by BRD pathogens. 27 

 28 
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Bovine respiratory disease (BRD) remains a health issue in feedlots, particularly with the trend for cattle 31 

to arrive lighter and have more days on feed before harvest. Since 2010, cattle weights at arrival are lower 32 

by 43 pounds than in 2023, yet final cattle weights average 140 pounds higher than in 2010 (Peel 2023; 33 

USDA, National Agricultural Statistics Service). Cattle are averaging 187 days on feed, which is 39 days 34 

more in 2023 than in 2010. This extended time in the feedlot reduces the number of cattle in the feedlot 35 

over a year’s time, increasing the financial impact of cattle getting sick or dying (Peel 2023). The financial 36 

loss from sick and dying cattle has increased as the average steer death loss rate increased 56% from 2010 37 

to 1.93% in 2023, making disease prevention a high priority in the feedlot (Peel 2023). Cattle that become 38 

sick later in the feeding period are costlier to the feedlot than cattle that are sick shortly after arrival due 39 

to the increased cost of treatment and the increasing cumulative investment made in the animal. In a 40 

study conducted in two feedlots, 45% and 39% of BRD pulls occurred after 100 days on feed (Neibergs 41 

personal communication). Even for cattle that recovered from BRD, they remained on feed an average of 42 

10 days longer and averaged 20 pounds lighter at harvest than non-BRD calves. The economic impact of 43 

BRD morbidity has been suggested to be as great as carcass and production traits during the finishing 44 

period (Buchanan et al., 2016).  45 

 46 

In addition to the economic losses that face feedlots, BRD also remains economically important for dairy 47 

producers. Economic losses occur from treatment costs, but also from the lifetime decrease in production 48 

and higher rate of culling of cows that experienced BRD as calves.  BRD remains a leading cause of 49 

preweaned mortality in dairy calves with an estimated cost of $252 per incident or $395.49 per death 50 

attributed to BRD (Dubrovsky et al., 2020; Overton 2020). Depending on the study and how BRD is 51 

detected, BRD is found in 12% to 64% of calves prior to weaning and 6 to 11% in weaned calves (Guterbock 52 

2014; Cuevas-Gomez et al., 2021; Cantor & Costa, 2022).  53 
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 54 

A genetic component for BRD has been reported and ranges from 0.04 to 0.24 (Snowder et al., 2006; 55 

Neibergs et al. 2014; Quick et al., 2020). Genome-wide association studies have identified genomic regions 56 

that are predictive of BRD infection using different approaches to identifying BRD susceptibility (Neibergs 57 

et al 2014; Van Eenennaam et al., 2014; Keele et al., 2015; Kiser et al., 2017). Some studies have used one 58 

or more detection method which may improve sensitivity and specificity, while others have used more 59 

general phenotypes such as “treated for BRD”. Some commonly used methods for BRD detection are the 60 

Wisconsin Health Scoring System (sensitivity 46% - 77.9%, specificity 74.1 to 94.2%), the California System 61 

(sensitivity 46.8 -72.6%, specificity 79.1-84.4%), thoracic ultrasound (sensitivity 76.5%, specificity 92.9%) 62 

and thoracic auscultation (sensitivity 53, specificity 72.9%) (Buczinski et al, 2015; Buczinski et al., 2016; 63 

Love et al., 2016; Decaris et al., 2022). The use of detection systems that rely solely on clinical symptoms 64 

of BRD will underestimate the true proportion of cattle with disease as a large number of cattle will appear 65 

healthy but have subclinical disease (Gulliksen et al., 2009; Kiser et al., 2017).  66 

 67 

 While there are justifications for the use of all these methods, it will influence the loci identified as 68 

associated with BRD and ultimately the accuracy of selection of animals based on those loci. Loci that are 69 

robust and consistently associated with BRD susceptibility are important to identify and use in prediction 70 

for selection against disease susceptibility. Accuracies for selection range from 0.23 in Angus cattle in the 71 

feedlot to 0.12 to 0.30 in Holstein dairy calves (Quick et al., 2020; Hayes et al., 2024). 72 

 73 

A second consideration when assessing the validation and importance of the loci identified that are 74 

associated with BRD is pathogen identification that are common in the population that is being studied. 75 

Assessing the pathogen(s) that initiated the disease is challenging as the pathogens present when clinical 76 
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symptoms are noted, may differ from those that initiated the onset of disease. Profiling BRD pathogens is 77 

challenging in the timing and collection of specimens for diagnostic tests, and few genetic studies have 78 

this information to inform the loci associated with disease. Summary diagnostic results for BRD pathogens 79 

across the US are not readily available for cattle newly diagnosed, and so the frequency of these 80 

pathogens in BRD cases is unknown. The distribution of pathogens is further complicated by differences 81 

in management practices, vaccines and the environment. Efforts are underway to collect diagnostic data 82 

on approximately 5500 cattle in different regions of the US to tease apart the important role of pathogen 83 

specific susceptibility in cattle and to begin to identify if there are specific pathogens that are more 84 

prevalent in certain areas of the US (Neibergs personal communication). 85 

 86 

In addition to genome-wide association studies, gene expression and gene set enrichment analyses are 87 

identifying gene pathways that are critical to BRD (Tizioto et al., 2015; Neupane et al., 2018; Sun et al., 88 

2020; Hasankhani et al., 2021; Lebedev et al., 2021; Cao et al. 2023). A better understanding of these gene 89 

pathways provides opportunities for targeted therapies to decrease morbidity and mortality rates 90 

associated with BRD in cattle and to better understand the mechanisms of bovine respiratory disease. 91 

 92 

In summary, efforts to reduce the frequency of BRD and the impact it has on beef and dairy cattle have 93 

not been fully effective. The continued exploration of loci associated with BRD provides the foundation 94 

for genomic selection to enhance disease resistance in cattle. The identification of the pathways and genes 95 

that are utilized for BRD resistance hold promise for identifying the mechanisms of the disease that can 96 

be used to treat cattle with disease. The use of these genetic approaches provides a management tool to 97 

reduce the frequency of BRD and the economic losses associated with it. 98 

   99 
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